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Abstract: The Canada lynx is listed as a threatened species, and as such, the identification and
conservation of lynx habitats is of significant concern. Lynxes require areas with high amounts
of horizontal cover made up of ground vegetation. Lidar offers a robust method of quantifying
vegetation structure, and airborne lidar has been acquired across large areas of potential lynx habitat.
Unfortunately, airborne lidar is often not able to directly measure understory horizontal cover due
to occlusion from the upper branches. Terrestrial lidar does directly measure understory horizontal
cover and can be used as training data for larger area models using airborne lidar. In this study, we
acquired 168 individual terrestrial lidar scans (TLS) across 42 sites in north-central Washington state.
We generated metrics from the single-scan TLS plots using depth maps, a digital cover board, and
voxels. Using our TLS metrics as the training data for the airborne lidar acquired for the entire Loomis
State Forest, we were able to produce a model using xgboost with 85% accuracy. We believe our
study shows that single-scan TLS plots can be used effectively to quantify fine-scale forest structure
elements relevant to species habitat, to then inform larger area models using airborne lidar.

Keywords: TLS; ALS; habitat modeling; machine learning; xgboost; single scan; voxels

1. Introduction
1.1. Canada Lynx

The Canada lynx (Lynx canadensis) is listed as a threatened species in the contermi-
nous United States [1]. As such, the identification and conservation of lynx habitats is of
significant concern. Canada lynxes are considered to be specialist predators relying on
snowshoe hares (Lepus americanus) as their main prey source. The Canada lynx–snowshoe
hare relationship is well documented [2,3], with lynx location and hunting dictated by
snowshoe hare abundance. The preferred lynx habitat is one that supports high numbers
of snowshoe hares.

Lynxes tend to avoid open and lightly forested areas, preferring areas with high
amounts of both vertical and horizontal cover [4–8]. While lynxes occupy a wide variety
of forest types, they prefer mid-successional forests with moderate to high stem densi-
ties [9,10]. Canada lynx habitats require high levels of cover extending above 1.5 m to
ensure sufficient vegetation and forage availability for snowshoe hares in the winter months
when snow covers the lower vegetation [10,11]. Many habitat-sampling techniques to iden-
tify appropriate Canada lynx habitats rely on the metrics of visual occlusion and forage
availability above typical snow depths.

1.2. Habitat-Sampling Methods

The Washington State Department of Natural Resources (WA DNR) is mandated to
manage the habitats of Canada lynxes under the 2006 Lynx Habitat Management Plan [12],
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which was developed as a revision of its original 1996 Lynx Habitat Management Plan.
An element of the plan is to maintain forage habitats on DNR-managed lands within lynx
management zones. The lynx management zones in Washington state are primarily in
the northeast of the state, with the largest state-managed forest within the management
zones being the Loomis State Forest. The DNR lynx management plan calls for measuring
understory horizontal cover using a 2 m × 30 cm cover board at a distance of 15 m and
a height of 1.5 m to 2 m from the ground. Stands are measured at 10 points on a transect
and 4 cover estimates are made at each point. Stands with 4 or fewer open views out of
40 observations are considered to have sufficient cover for forage habitat.

Similar sampling techniques are used throughout the range of Canada lynx habitats
in the conterminous United States to identify areas for conservation. Aside from cover
boards, other methods are also used for determining understory horizontal cover such as a
staff ball, cover pole, or profile tube. The resultant estimated cover can vary significantly
depending on the method used [13]. The determination of whether a cover board is open
or not is normally a subjective assessment made in the field and is prone to observer
bias. Cameras and post-field-work digital processing of imagery can remove some of that
observer bias [14,15]; however, the use of active remote sensing technologies such as lidar
may provide a better alternative for arriving at an objective measurement of forest and
ground vegetation structure.

1.3. Lidar

Airborne laser scanning (ALS) has become a standard tool for forest mensuration. It is
well-established in its use for quantifying forest structure [16,17]. Spatial models predicting
forest structure from lidar data are well-established. Multiple linear regression (MLR)
models providing estimates of basal area, tree heights, canopy closure, gap fractions, and
leaf area index are all possible using airborne lidar [18–22]. Machine-learning regression
models have been shown to outperform MLR models for predicting forest metrics from
lidar data such as biomass [23,24], and machine learning using categorical data has been
employed for tree location and species identification, point classification, stand heights,
and other forest structure parameters [25–28]. Common machine-learning techniques
for forest metrics using lidar data are random forest and support vector machine, with
gradient-boosting methods such as xgboost becoming more common [29,30]. Further, deep-
learning techniques are also becoming more commonly applied to lidar data to predict
forest characteristics [31–33]. Machine-learning techniques can improve results beyond
MLR analysis and allow for the modeling of ordinal data beyond what a regression analysis
is capable of.

While aerial lidar has successfully been used to identify important habitat character-
istics such as the height of dominant trees and mid-canopy forest structure [34–36], the
occlusion from overstory branches and leaves makes the accurate prediction of understory
metrics such as horizontal cover more difficult. Work has been conducted on modeling
understory conditions using aerial lidar, including horizontal cover estimated in the field
from cover boards to train landscape-level airborne lidar models to predict horizontal
cover specifically for lynx habitats [37–40]. In this study, we sought to demonstrate that
horizontal cover metrics derived from terrestrial lidar scanning (TLS) can be used in place
of field cover board estimates of horizontal cover to train landscape-level airborne lidar
machine-learning models.

TLS has been used in previous wildlife studies to characterize levels of concealment
and predator sightlines [41]. TLS is well-suited to determine understory vegetation char-
acteristics such as the density of foliage and amount of open area [42–44]. The depth of
view and openness of a location can be quantified by looking at how far each pulse travels,
and if a pulse is not returned at all [45,46]. TLS can replicate the use of a cover board at
fixed locations in a non-subjective manner, as well as return a robust estimate of the total
depth and openness of a plot. TLS offers many advantages over cover boards. It produces
an accurate, high-resolution point cloud of forest vegetation that allows understory hori-
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zontal cover to be estimated over a large area. It can also produce consistent horizontal
cover estimates by eliminating the subjectivity of ocular estimates with a cover board. TLS
measurements are also likely to be considerably faster to complete compared to a large
number of cover board measurements at each sample point.

1.4. Objectives

The goal of this study was to produce a model and raster map of understory horizontal
cover estimates across the entirety of the Loomis State Forest, as a proxy for Canada lynx
habitats. The study had two main objectives:

• To generate a range of metrics that quantify understory horizontal cover from single-
point TLS scans, and to determine which of these horizontal cover metrics best differ-
entiates low from high horizontal cover.

• To use TLS-derived understory horizontal cover metrics to train a model predicting
horizontal cover from a host of ALS metrics at plot scale, which can then be applied to
the rasterized ALS metrics to map horizontal cover across the landscape.

A large portion of this study was an exploration of what reasonable metrics can be
derived from TLS for understory horizontal cover and, in turn, identifying which metrics
can be derived from ALS to produce a high-performing model. The outcomes of this
research will aid in creating robust models of habitat conditions that can be used by land
managers to identify areas of special conservation concern.

2. Methods
2.1. Study Area

This study was conducted primarily in the Loomis State Forest with additional study
sites in the nearby Little Pend Oreille State Forest in north-central Washington State, USA
(Figure 1). Both forests are managed by the WA DNR. The Loomis State Forest occupies
just over 54,000 hectares in northern Washington with the northernmost boundary abutting
the Canadian border. There are several vegetation zones within the Loomis forest, with
the two most common zones being dominated by the Douglas fir (Pseudotsuga menziesii)
and subalpine fir (Abies lasiocarpa) tree species [47]. The other vegetation zones are shrub
steppe, ponderosa pine (Pines ponderosa), lodgepole pine (Pinus contorta), and alpine. The
western side of Loomis tends to be higher in elevation and hence more heavily forested
than the east side. Much of the forest within Loomis is fragmented due to logging activity
and past fires. Active cattle grazing also occurs over a large percentage of the forest.

2.2. Site Selection

The WA DNR uses the Remote Sensing Forest Inventory System (RS-FRIS) to char-
acterize forest lands on state trust lands [48]. RS-FRIS includes a grid of 0.04 ha sample
plots that are used both for statistical estimates and to train predictive models. Existing
RS-FRIS plots were used as study sites for this study. Plots were broadly characterized by
the WA DNR into four categories based on past measurements: low cover, young forest,
normal, and mature forest. Sites from the existing pool of RS-FRIS plot locations were
chosen for this study based on three criteria: (1) within 2 km of a road for ease of access,
(2) no significant disturbances (such as fire or logging) at the site since the most recent ALS
acquisition, and (3) good representation of the four RS-FRIS categories. In total, 40 sites
were selected with 4 TLS scans acquired at each site for a total of 160 scan plots.
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Figure 1. Map of study sites within the Loomis State Forest (red frame) and the Little Pend Oreille
State Forest (pink frame). A total of 42 sites were sampled, with each site consisting of 4 TLS scan
plots (168 plots total). Land cover classification from the National Land Cover Database was added
to provide vegetation cover context.

2.3. TLS Acquisition

A FARO s350 TLS unit was used for this study. The FARO uses 1550 nm laser light and
a phase shift sampling process. Scan line resolution was set at 0.035◦ for both horizontal
and vertical scan lines, and full 360◦ horizontal scans including color photos were taken
at each scan location. Scan line density was 164 per meter at 10 m from the scanner and
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109 per meter at 15 m from scanner. Vertically, the FARO scans from 30◦ to 180◦, with 180◦

being straight up (overhead) and 0◦ being straight down (nadir).
Scanning was performed between October 2021 and September 2022. Scanning was

only performed in the summer and early fall. Each site had a center monumented for
the RS-FRIS program. TLS scanning was performed with a central scan (scan 1) placed
1 m north of the monumented site center unless that location was heavily occluded by
vegetation, in which case the location within 1 m of the site center with the best visibility
was used. A TLS target sphere was placed at the site center with three other spheres placed
at ~10 m distance from the center in the general directions of 60◦, 180◦, and 300◦ magnetic
north. Scans 2, 3, and 4 had a generally similar distribution placed at ~10 m distance
from the center in the general directions of 0◦, 120◦, and 240◦ magnetic north (Figure 2).
Each scan location was considered a plot for the TLS metrics derived from a single scan.
The edge scans and sphere placement had to have a significant amount of leniency in
the actual location. If extremely dense vegetation or a large tree occupied the preferred
location of placement, then the closest location to the preferred location that allowed for
the surveying of the largest amount of the site was chosen. This scanning location selection
criteria inevitably biased the scans against locations with near total occlusion, but that bias
was deemed better than potentially missing as much as 50% of an area due to the scanner
being placed directly next to a large tree.
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Figure 2. Diagram of TLS scanning locations and target spheres used for co-registration of the scans.
Each site had 4 TLS scans (plots). The oblong shape of the exterior sphere and scan locations is
because precise placement was often not possible due to vegetation occlusion.

2.4. TLS Pre-Processing and Georectification

The pre-processing of the scans was performed in the program FARO Scene [49].
Two different processing workflows were used depending on whether the scans were
to be used for the digital cover board (DCB) or voxelization. For the DCB, the scans
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had all position data removed ensuring that the scan center was at a 0, 0, 0 positional
index. No point filtering was applied to the scans to ensure that all potentially valid points
were included. TLS noise and edge effects have little effect on the DCB process, as a 2D
depth map is created from the point cloud, and the trailing points of an object due to the
inherent edge effects of TLS are not visible when creating a raster of the view from the
scanner. Removing points through filtering, however, can create gaps in the depth raster,
giving an impression of increased openness. A las output file was created from the FARO
scene and brought into the open-source lidar-processing program Cloud Compare [50].
Cloud Compare was used to generate a depth map from each TLS scan using the scanning
resolution to define the number of rows and columns in the output raster. ASCI image files
were produced for each scan.

Pre-processing for the voxelization technique was also performed in FARO Scene.
Colorization of the point cloud was performed by applying the color captured by the lidar
unit camera to the point clouds. Edge effect filtering as well as the removal of scan points
with exceedingly low reflectance values were also performed. Las files were exported from
FARO Scene and brought into Cloud Compare. The co-registration of scans was performed
within Cloud Compare. Target spheres, tree branches, and ground features were used
to place the scans in the correct alignment relative to each other. The scans had a rough
approximation of location and elevation from the GPS receiver and altimeter on the FARO
unit. The coordinate system was converted into the projection Washington State Plane
south (EPSG:2927) to match the coordinate system of the airborne lidar data of the area.
The initial approximate location of the TLS scans was used to aid the manually conducted
fine registration of the TLS scans to the ALS data. Priority was given to matching the
ground points of the TLS and ALS scans rather than the points from the vegetation. X- and
y-coordinates of the TLS scans were determined by matching a minimum of 10 shared tree
locations between the point clouds, then the z-coordinate was determined by matching
ground points. Ground models of sites were created using joined TLS and ALS point
clouds. These ground models were used to normalize the height of both the TLS scans
and the corresponding ALS point cloud tiles. Lidar point cloud normalization removes
elevation from the z-values of the points, so the z-values then reflect the height above the
ground. Then, 10 m-radius point cloud clips were taken at each scan plot location from the
individual TLS point clouds and the ALS point cloud.

2.5. TLS Digital Cover Board (DCB)

The DCB method is the process of determining, at a defined height increment of
the plot, how far each pulse traveled before coming into contact with a surface (depth),
as well as determining if a pulse interacted with a surface at all (openness) [45]. A 2D
depth map of TLS scans can be created by generating a raster where each pixel represents
a location where a laser pulse was sent. This is determined by the scan line resolution
when the scan was taken. With a scan line resolution of 0.035◦ in both the vertical and
horizontal axis of the scanner, the resulting raster will have ~10,286 columns (360◦/0.035◦)
and ~4286 rows (150◦/0.035◦). Each pixel represents the distance traveled by the laser
pulse at the angle increment, with a null value returned at locations where there was no
pulse return (Figure 3). The value of each pixel is the distance from the scanner. A basic
raster analysis can determine which pixels were within a set distance of the scanner, and
which pixels exceeded that distance. In areas where there is a constant gradient of distances
(i.e., line of sight not occluded by close vegetation), it is possible to identify the location on
the horizon of the image a set distance away from the scanner (Figure 3).

We generated two distinctly different sets of metrics from the DCB. The first set
used a distance threshold of 10 m radius from the scan position and the second used a
distance threshold of 15 m. The 10 m distance was used to match the desired model output
resolution of 20 m pixels. The 15 m distance was used to replicate as closely as possible
the cover board transect method currently used to assess lynx habitat suitability. For both
methods, a vertical swath (ribbon) of pixels, from the 2D depth rasters, contoured to the
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plot topography was created (Figure 3). A simple horizontal ribbon is not possible unless
the scan was taken on a perfectly flat plane. The ribbon will have a high side and a low
side on a depth map if the scan was taken on a hill.
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Figure 3. A 2D depth map of a TLS scan. This is a 2D representation of the full 360◦ scan, i.e., the left
and right of the image are the same location in space. The wave-like contour of the land in the image
is actually looking uphill (the high point on the left), and downhill (the low point on the right). All
points that returned more than 10 m from the scanner are colored green. The ground level at 10 m
is determined and a digital cover board (DCB) is placed, represented here by the points colored as
grey scale.

With this horizon line identified, a continuous digital cover board can be ribboned
around the entire 360◦ view from the scanner. For the 10 m distance threshold, the height of
the ribbon used to represent a 2 m-tall cover board was ~326 pixels. The angular increment
from the scanner to a height of 2 m from a distance of 10 m was 11.42◦ (Figure 4). With
every pixel representing a 0.035◦ scan line, the number of pixels a 2 m-tall cover board
would occupy was 11.42◦/0.035◦, approximately 326. There was some variation in the total
number of pixels per digital cover board based on the amount of curvature in the ribbon.
This was due to clipping square pixels to fit a curved line. Statistics of this 326-pixel-wide,
wave-like ribbon were calculated for the DCB metrics. The metrics derived from this DCB
method were the total number of pixels within the ribbon, number of pixels with some
value other than null, which represents total cover, total percent cover, number of pixels
with a value equal to or less than 10, percentage of pixels with a value less than 10 (i.e.,
percentage of view with cover within 10 m of plot center), mean distance to cover, and
standard deviation of the distance to cover.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

threshold of 15 m. The 10 m distance was used to match the desired model output resolu-
tion of 20 m pixels. The 15 m distance was used to replicate as closely as possible the cover 
board transect method currently used to assess lynx habitat suitability. For both methods, 
a vertical swath (ribbon) of pixels, from the 2D depth rasters, contoured to the plot topog-
raphy was created (Figure 3). A simple horizontal ribbon is not possible unless the scan 
was taken on a perfectly flat plane. The ribbon will have a high side and a low side on a 
depth map if the scan was taken on a hill. 

With this horizon line identified, a continuous digital cover board can be ribboned 
around the entire 360° view from the scanner. For the 10 m distance threshold, the height 
of the ribbon used to represent a 2 m-tall cover board was ~326 pixels. The angular incre-
ment from the scanner to a height of 2 m from a distance of 10 m was 11.42° (Figure 4). 
With every pixel representing a 0.035° scan line, the number of pixels a 2 m-tall cover 
board would occupy was 11.42°/0.035°, approximately 326. There was some variation in 
the total number of pixels per digital cover board based on the amount of curvature in the 
ribbon. This was due to clipping square pixels to fit a curved line. Statistics of this 326-
pixel-wide, wave-like ribbon were calculated for the DCB metrics. The metrics derived 
from this DCB method were the total number of pixels within the ribbon, number of pixels 
with some value other than null, which represents total cover, total percent cover, number 
of pixels with a value equal to or less than 10, percentage of pixels with a value less than 
10 (i.e., percentage of view with cover within 10 m of plot center), mean distance to cover, 
and standard deviation of the distance to cover. 

 
Figure 4. The dimensions of the view area of an object 2 m-tall and 10 m away from the TLS. The 
number of pixels within the depth raster representing 2 m is calculated by dividing the angular view 
(11.42°) by the scan angle increment (0.035°). 

Similarly, for the 15 m distance threshold digital cover board, the horizon line was 
identified, and a ribbon was placed. To mimic the current cover board protocols [12], we 
placed a 2 m-tall ribbon 1.5 m above the ground and then subdivided the ribbon into 0.3 
m sections as if there were individual 2 m × 0.3 m cover boards surrounding the center 
scan location. The number of these cover boards that had no vegetation occluding them 
were counted for each scan (Figure 5). 

Figure 4. The dimensions of the view area of an object 2 m-tall and 10 m away from the TLS. The
number of pixels within the depth raster representing 2 m is calculated by dividing the angular view
(11.42◦) by the scan angle increment (0.035◦).
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Similarly, for the 15 m distance threshold digital cover board, the horizon line was
identified, and a ribbon was placed. To mimic the current cover board protocols [12], we
placed a 2 m-tall ribbon 1.5 m above the ground and then subdivided the ribbon into 0.3 m
sections as if there were individual 2 m × 0.3 m cover boards surrounding the center scan
location. The number of these cover boards that had no vegetation occluding them were
counted for each scan (Figure 5).
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Figure 5. A depth raster of a scan with all pixels further than 15 m colored green. The down-sampled
pixel ribbon in the image (outlined in magenta) represents a series of 2 m × 0.3 m cover boards
surrounding the central viewpoint at 15 m distance and 1.5 m above ground. A clear cover board as
defined by the lynx survey protocols would be the bottom two cells in the line, all colored green.

2.6. TLS Voxelization

Voxelization is the three-dimensional gridding of the total extent of a point cloud at
a defined resolution. To indicate occupancy, a voxel is given a value of 1 if at least one
lidar point is within the voxel, and a 0 if no points are within the voxel. A voxel is given a
value of 1 whether there is 1 point or 1000+ points within the cell area. This is a method of
normalizing the point density across an area, as the point density is inherently higher the
closer to the scanner the grid cell is. For all metrics derived from point clouds, the R package
lidR was used [51,52]. We chose a voxel size of 10 cm × 10 cm × 10 cm (1000 cm3) (hereafter
referred to as simply 10 cm voxel) for each height-normalized point cloud. A 10 cm voxel
size has previously been shown to be an optimal size for quantifying viewsheds from TLS
and canopy gap estimates [53,54]. Voxelization was performed on each individual scan
clipped at 10 m from plot center. Volatilization was not performed on the mosaiced scans,
as the variable amount of occlusion at each site would have biased voxel counts toward
relatively open areas. The open areas had near-perfect capture of vegetation from the TLS,
while sites with dense understory had a large amount of occlusion present. Creating voxel
counts from a single-point scan slightly changed the metric measured by the voxelization
to the area occupied by vegetation seen from the scanner, rather than being a true measure
of the area occupied by vegetation.

The 10 cm voxels were then summarized into 0.5 m-resolution cubes (Figure 6). Voxel
metrics were stratified into 0.5 m height bins, so the resulting metrics were expressed in
half-meter increments above the ground. Voxel statistics were calculated for all 0.5 m-height
strata from the ground to 3 m (Table 1).
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Figure 6. A voxelized and normalized TLS point cloud (left) with each point representing the centroid
of a 10 cm cube. A voxel summary model (right) where each 0.5 m-resolution cube is colored by the
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Table 1. Summary table of the metrics derived from the terrestrial lidar point clouds. In total,
42 metrics were created from the digital cover board (DCB) depth maps and voxelization approaches.

TLS METRICS

10 M DCB Total percentage of cover, number of pixels, percentage of cover within 10 m, and mean distance and
standard deviation of all pixels and cover pixels at 10 m (7 of the 42 metrics).

15 M DCB
Percentage of cover within 15 m per down-sampled pixel, percentage of cover within 15 m per
vertical column of pixels, percentage of vertical columns with no cover, and mean distance and

standard deviation of all pixels and cover pixels at 15 m (8 of the 42 metrics).

VOXELIZATION Total count of 10 cm voxels per 0.5 m height stratum, mean count of 10 cm voxels per 0.5 m cube, and
count of 0.5 m cubes with 1 or more 10 cm voxels per height stratum (27 of the 42 metrics).

2.7. ALS Data

The airborne lidar data covering the entire Loomis State Forest were collected in early
June 2016. Data were collected using an Optech Galaxy Lidar System with an average pulse
density of ~12 pulses/m2 and a minimum 50% overlap. RGB imagery was used to color the
ALS point cloud. The airborne lidar data for the Little Pend Oreille Forest were collected
in July 2016, also using an Optech Galaxy Lidar System with an average pulse density of
~3 pulses/m2 and minimum 50% overlap. The 2016 data were the only ALS data available
for the study area, resulting in a 5-to-6-year difference between the acquisition of the ALS
data and the TLS data; however, good point matching between ALS and TLS scans was
still possible.

ALS point clouds were subdivided to test whether a partial cloud produced a better
model. Along with the full ALS point cloud, subdivisions using only the first returns,
only the last returns, all points less than 2 m above the ground, and all points less than
2 m above the ground but higher than 0.5 m above the ground (Figure 7). Typical ALS
metrics using z-values and intensity values were created for each grouping of ALS points
(Table 2). In addition to direct measurements of point distributions, ratios of points were
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also calculated. For each of the point sets, the cumulative percentage of returns (CPR) at
nine defined height strata relative to the local z maximum was calculated [55]. The overall
relative point density (ORD) and normalized relative point density (NRD) of each point set
were also calculated [14].
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Figure 7. Normalized ALS point cloud with the ground, 0.5 m above the ground, and 2 m above the
ground, denoted with red lines. These lines illustrate the subdivisions of the ALS point cloud that
were used for ALS metric generation. First and last return sub-selections were also created for ALS
metric generation.

Table 2. Summary table of the metrics derived from the airborne lidar point clouds. In total,
286 metrics were created from the ALS data.

ALS METRICS

POINTS USED All points, only first returns, only last returns, all points < 2 m in height, and points > 0.5 m and <2 m
in height (five groups of points).

Z AND INTENSITY
METRICS

Count, sum, max, mean, standard deviation, skew, kurtosis, percentage above mean, 19 height
percentiles (5th to 95th percentile), and mean intensity at height percentiles (47 per group, 235 total).

RATIOS CPR for each point group (9 per group, 45 total), and ORD and NRD (6 total).

2.8. Statistical Analysis

An overabundance of metrics was produced from both the TLS and ALS data. An
exploratory analysis was conducted to determine (1) which TLS metrics best described
the variation among plots, (2) whether regression models or categorical data and machine-
learning modeling produced the best results, and (3) which subset of ALS metrics either
had the highest correlation with the TLS data or were the best performing predictors in a
machine-learning approach.

A principal component analysis was performed on the 42 TLS metrics to determine
which metrics best described the variation between plots. All metrics were normalized be-
fore the PCA analysis. TLS metrics that contributed highly to the first principal component
(PC1) were used for a full stepwise regression analysis with all derived ALS metrics. They
were also broken into ordinal categories of high and low understory cover to be used in
the training and testing of the machine-learning algorithms random forest and extreme
gradient boosting (xgboost) using a split of 70% training and 30% testing [30].

3. Results
3.1. TLS PCA

Of the 42 TLS metrics that were used for the PCA, the four metrics that most con-
tributed to the principal component axis 1 were voxel count at 1.5 to 2 m, voxel count at 2 to
2.5 m, voxel cubes at 1.5 m, and the digital cover board. These four metrics will be referred
to as “PC1 Metrics” hereinafter. The four metrics that most contributed to the principal
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component axis 2 were the means of the height strata of 2.5 m to 3 m, 2 m to 2.5 m, 1.5 to
2 m, and 3 m to 3.5 m (Figures 8 and 9).
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Our 15 m DCB metric that followed the current lynx management criteria of determin-
ing the percentage of fully visible coverboard quadrants at 1.5 m to 2 m height was not a
significant contributor to PC1 or PC2; however, the count of DCB cells visible at 15 m was
the fourth highest contributor to PC1.

The PCA plot of the TLS metrics is presented in Figure 9. High-cover and low-cover
classes were determined by using the DCB percentage metric with plots having more than
90% occluded cells counting as cover. There was an even split of plots that were high cover
(80 plots) vs. low cover (80 plots) in our data.

3.2. Models

Models were developed to predict TLS cover metrics from ALS metrics to produce
area-wide rasters of predicted TLS cover metrics. All models performed worse when
combining the data from the Loomis State Forest with the data from Little Pend Oreille
State Forest. For all of the final models, the Loomis State Forest data were run alone. The
Loomis State Forest had 32 of the 40 total sites. With each site comprised of 4 scan plots,
128 plots were used for the modeling. Using a 70% training, 30% testing split, 90 plots were
used for training with 38 plots used for testing.

3.2.1. Regression

A stepwise regression analysis was performed using each of the individual TLS
understory horizontal cover metrics that most contributed to PC1, and the collection of
ALS metrics. While there were statistically significant relationships between each of the
four TLS cover metrics and a collection of the ALS metrics using a forward and backwards
stepwise regression analysis (p < 0.05), the R2 values did not increase above 0.3. We were
not able to find a satisfactory regression model to predict any of the TLS horizontal cover
metrics from ALS.

3.2.2. Machine Learning

The four PC1 metrics were converted into ordinal data of high cover and low cover,
with 50% of the training data (45 plots) assigned the high-cover label and the other half
assigned the low-cover label. For the DCB metric, the high-cover class was comprised of
plots with greater than 90% cover, and the low-cover class was plots that had less than 90%
cover. This threshold of 90% cover corresponds to the WA DNR protocols of 4 or fewer
open views out of the 40 observations being considered to have sufficient cover for a forage
habitat (see Section 1.2).

Xgboost produced higher-accuracy models than random forest. The xgboost models
using ALS data to predict the ordinal cover class from TLS data had a total accuracy of less
than 70% when using the high cover/low cover split as determined from each of the three
voxel-based PC1 metrics (voxel count 1.5 to 2 m, voxel count 2 to 2.5 m, and voxel cubes at
1.5 m). However, using the DCB PC1 metric, a model accuracy of 85% was achieved with
the testing data, with the area under the ROC curve set at 0.92. Of the 284 ALS metrics that
were used in the model, 279 were removed from the final model, as only 5 ALS metrics
were needed to produce our final model <2 m 95p, <2 m SD, <2 m I 70%, all SD, all 95p
(Figure 10).
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The final model had a testing accuracy of 85% with the two-class ordinal data of high cover and low
cover being determined by the TLS DCB method.

3.2.3. Model Output

The xgboost model produced a binary model of low cover/high cover. A third category
(no cover) was added to the final model output of (Figure 11). This third category was
created by labeling all areas with no ALS returns greater than 2 m as no cover. This
accounted for the areas within Loomis that were not forested.
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4. Discussion
4.1. TLS Metrics

The TLS metrics that accounted for the greatest amount of variation between plots all
related to a vegetation structure between 1.5 and 2 m above ground level (Figure 7). This
corresponds to the vegetation height stratum that is considered important for snowshoe
hare and thus lynx habitats [3,56,57]. This validates our TLS metrics as ecologically mean-
ingful for quantifying a difference between poor habitat structure and preferred habitat
structure. Of the four metrics that accounted for the greatest plot variability, our digital
cover board metric produced the best model. Terrestrial lidar has been shown to be effective
at quantifying horizontal cover [41,45,54], so we did not directly compare our metrics with
traditional methods such as cover boards. While we believe our metrics are robust mea-
surements of horizontal cover, more research should be conducted to explore relationships
between TLS metrics and population data for snowshoe hare beyond a quantification
of cover.

The number of studies using TLS for habitat characterization is increasing, as well
as the sophistication of the approaches. For example, a form of the DCB metric has been
previously used to quantify forest structure [45,46], but this study is the first we are aware of
that directly applies this approach to habitat quantification. There has been previous work
using TLS for understory habitat classification [58,59], as well as excellent R packages that
have been developed to quantify the viewshed specifically for habitat characterization [60].
The advantage of our metrics is the ability to be applied to single-point TLS scans as well as
account for slope. This work and others speak to the utility of this technology to produce
high-fidelity and objective estimates of forest structure related to the habitat requirements
for numerous different species.

One limitation of the TLS voxel methods is that the voxel counts were derived from
a single-point scan. The final voxel counts were measurements of “How much stuff is
visible from the scanner location” and not a true measurement of “How much stuff is
there”. While there are drawbacks to single-point scans, they are similar to ocular estimates
of cover made by an observer at a single point. To fully utilize a voxelization method,
multiple scans stitched together must be used for a near complete scan of all vegetation
structures [61,62]. Having a near-complete scan of all the vegetation from multiple scans
is relatively easy in open stands; however, many of our stands had dense understory
vegetation with high amounts of occlusion. In such areas, the amount of single-point scans
that would have been required for a complete sampling was infeasible to collect. Further,
with every additional scan compiled into a stitched together TLS scene, the likelihood of
error increases due to either slight misalignments between scans or some environmental
factor such as wind actually moving the vegetation. Using single scans allowed for the
method to be applied universally across stands. Using a mobile terrestrial lidar unit such as
a backpack or wand device may allow for better data collection in regards to voxelization,
but it would be unlikely that quality depth rasters could be produced given the lower level
of point accuracy inherent in mobile lidar units [63,64].

4.2. ALS Metrics

The ALS data were collected in 2016 while the TLS data were collected in 2022. This
6-year time gap, a common occurrence in remote sensing research, presented some addi-
tional challenges beyond a normal ALS/TLS alignment. While the 2016 ALS data were the
most recent lidar data available, there were areas where significant disturbances occurred
(e.g., logging and fire) in the interim that had to be removed from the analysis. That we
were still able to produce a model with 85% accuracy despite this age gap indicates the
utility of lidar acquisitions for forest structure characterization years after the initial lidar
acquisition, where tree growth rates are relatively slow, as in this study area.

ALS area-based metrics typically look at the vertical arrangement of points within a
defined plot size. Characterizing the vertical arrangement of points using simple metrics
has been the subject of extensive research. The percentile heights of points is one of the
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most common metrics derived from lidar along with ratios of points below and above a
defined threshold [17,65–67]. For our study, we derived 286 different metrics from ALS
informed by reviewing methods used in previous forest structure research. We identified
5 metrics from the 286 that allowed for a high model fit using xgboost. Three of the five
metrics used a subset of the point cloud of points below 2 m, while the other two metrics
used all of the point returns. The 95th percentile height and the SD of points are lidar
metrics that have been shown to be useful when modeling forest structural elements such
as tree height, biomass, basal area, and quadratic mean diameter [68–70]. It is unsurprising
that these metrics that are commonly used for modeling biomass are also useful when
modeling horizontal cover. The combination of using these metrics from both the full
point cloud as well as the points below 2 m may indicate that for future studies utilizing
ALS for forest structure characterization, combining subsets of the data along with the
full point cloud may provide more robust models. The fifth metric used was the mean
intensity of points located in the lower 70% of 2 m (1.4 m). An important caveat when
using intensity values from aerial lidar is that they are usually not calibrated to permit
comparison between acquisitions [71,72]. Intensity values vary depending on the distance,
angle, and surface that is reflecting the lidar pulse [73,74]. That different surfaces return
different lidar intensity is likely the key to why it is an important predictor of understory
vegetation conditions. If in the lower 1.4 m of a forest there is a lot of vegetation, then
a different intensity value should be received than if there is a lack of vegetation and
more visible soils or duff. When working within a single ALS acquisition, lidar intensity
without calibration can still be effectively used to aid in differentiation between ground
cover classes [75,76].

4.3. Model Fit

Our 85% accuracy rate was achieved when using only the Loomis State Forest plots
and the Loomis ALS data. We had to remove our Little Pend Oreille plots from the analysis.
We felt it was important to include the mention that both study areas were initially collected
for analysis because it illustrates that a model generated using lidar data from one lidar
acquisition may not be applicable to a different lidar data set collected with a different
pulse density in a different forest. A model could not be generated that performed well for
both forests. With only eight sites located within the Little Pend Oreille State Forest, it is
reasonable to assume that our poor model fits for the area were partially due to the small
sample size.

Our model also did not consider spatial autocorrelation between plots. Previous work
producing landscape models from remote sensing data leveraged spatial autocorrelation to
improve overall model fits [77]. Our methods were not reliant on spatial interpolation to
derive a final model, but rather depended on the vertical distribution of lidar points for
the model fit regardless of the x, y location of the raster cell. Errors or enhancements for
model fits due to spatial autocorrelation are of the most concern when using interpolation
methods [78,79].

5. Conclusions

Our final model output was a 20 m-resolution raster of three horizontal-cover classes
(no cover, low cover, and high cover). No filtering was applied when identifying contiguous
areas of high cover large enough to meet lynx habitat requirements. Our model outputs
showed whether each individual 20 m grid cell had ALS point values that were likely to
be indicative of high or low horizontal cover. We concluded that our model of understory
horizontal cover could be used in conjunction with other key habitat considerations to
inform a more holistic and connectivity-sensitive habitat model.

Beyond the utility of TLS to generate an objective measurement of understory horizon-
tal cover, we believe that other important forest metrics could also be modeled with our TLS
metrics. TLS is already widely used to quantify biomass, map tree stems, and determine
tree diameters and other forest metrics [80–83], but the utility of single-point TLS scans for
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forest mensuration needs more research. We feel that our approach to spatial modeling
from single-point TLS scans will be of great interest to forest managers and conservationists
in need of an objective and time efficient method to quantify horizontal cover as it relates
to habitat suitability for other wildlife species, among broader applications such as forest
inventory and carbon storage.
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